Sabtu, 19 Desember 2015

Siklus Biokarbon

Siklus karbon adalah siklus biogeokimia dimana karbon dipertukarkan antara biosfer, geosfer, hidrosfer, dan atmosfer Bumi (objek astronomis lainnya bisa jadi memiliki siklus karbon yang hampir sama meskipun hingga kini belum diketahui). Dalam siklus ini terdapat empat reservoir karbon utama yang dihubungkan oleh jalur pertukaran. Reservoir-reservoir tersebut adalah atmosfer, biosfer teresterial (biasanya termasuk pula freshwater system dan material non-hayati organik seperti karbon tanah (soil carbon)), lautan (termasuk karbon anorganik terlarut dan biota laut hayati dan non-hayati), dan sedimen (termasuk bahan bakar fosil). Pertukaran karbon antar reservoir, terjadi karena proses-proses kimia, fisika, geologi, dan biologi yang bermacam-macam. Lautan mengadung kolam aktif karbon terbesar dekat permukaan Bumi, namun demikian laut dalam bagian dari kolam ini mengalami pertukaran yang lambat dengan atmosfer.

Bagian terbesar dari karbon yang berada di atmosfer Bumi adalah gas karbon dioksida (CO2). Gas-gas lain yang mengandung karbon di atmosfer adalah metan dan kloroflorokarbon atau CFC (CFC ini merupakan gas artifisial atau buatan). Gas-gas tersebut adalah gas rumah kaca yang konsentrasinya di atmosfer telah bertambah dalam dekade terakhir ini, dan berperan dalam pemanasan global.

Karbon mengalir antara masing-masing penampungan (reservoir) dalam pertukaran yang disebut siklus karbon, yang memiliki komponen lambat dan cepat. Setiap perubahan dalam siklus karbon yang bergeser dari satu reservoir menempatkan lebih banyak karbon di penampungan lain. Perubahan yang menempatkan gas karbon ke atmosfer hasil dalam suhu lebih hangat di Bumi.

Selama jangka panjang, siklus karbon tampaknya mempertahankan keseimbangan yang mencegah semua karbon Bumi dari memasuki atmosfer (seperti halnya di Venus) atau agar tidak disimpan seluruhnya dalam batuan. Keseimbangan ini membantu menjaga suhu bumi relatif stabil, seperti termostat.

Siklus karbon merupakan siklus biogeokimia terbesar. Ada 3 hal yang terjadi pada karbon :
  • Tinggal dalam tubuh,
  • Respirasi oleh hewan,
  • Sampah/sisa dan Karbon itu masuk ke dalam perairan melalui proses difusi.
Proses dalam siklus karbon
Secara umum,  karbon akan diambil dari udara oleh organisme fotoautotrof  (tumbuhan, ganggang, dll yang mampu melaksanakan fotosintesis). organisme tersebut, sebut saja tumbuhan, akan memproses karbon menjadi bahan makanan yang disebutkarbohidrat, dengan proses kimia sebagai berikut :
6 CO2 + 6 H2O (+Sinar Matahari yg diserap Klorofil) ↔ C6H12O+ 6 O2
Karbondioksida + Air (+Sinar Matahari yg diserap Klorofil)↔ Glukosa + Oksigen.
 Hasil sintesa karbohidrat itu dimakan para makhluk hidup heterotrof sebagai makanan plus oksigen untuk bernafas. Tidak peduli makhluk herbivora, carnivora, atau omnivora, sumber pertama energi yang tersimpan dalam karbohidrat adalah tumbuhan.Karbon di dalam sistem respirasi akan dilepas kembali dalam bentuk CO2 yang nantinya dilepaskan saat pernafasan. Selain pelepasan CO2 ke udara saat pernafasan, para detrivor (pembusuk) juga melepaskan CO2 ke udara dalam proses pembusukan. Manusia juga tidak kalah peran dalam proses ini. Hasil segala pembakaran, mulai dari pembakaran sampah, pembakaran bahan bakar minyak di dalam kendaraan bermotor, asap pabrik, dan lain-lain juga melepaskan CO2 ke udara. CO2 di udara nantinya akan ditangkap oleh tumbuhan lagi dan siklus mulai dari awal lagi.
 Di daratan, proses pengubahan CO2 menjadi karbohidrat dan melepaskan oksigen dilakukan oleh tumbuhan darat, sebaliknya, di daerah perairan, peran ini dimainkan oleh organisme-organisme fotoautotrof perairan seperti ganggang, fitoplankton, dan lain-lain. begitupula dengan peran yang melepaskan CO2 ke udara. Hal itu dilaksanakan oleh para detrovor dan organisme heterotrof. Di daratan ada manusia, kambing, sapi, harimau, dll. di lautan ada berbagai jenis ikan dan makhluk-makhluk perairan.
 Proses timbal balik fotosintesis dan respirasi seluler bertanggung jawab atas perubahan dan pergerakan utama karbon. Naik turunnya CO2 dan O2 atsmosfer secara musiman disebabkan oleh penurunan aktivitas Fotosintetik. Dalam skala global kembalinya CO2 dan O2 ke atmosfer melalui respirasi hampir menyeimbangkan pengeluarannya melalui fotosintesis.
Akan tetapi pembakaran kayu dan bahan bakar fosil menambahkan lebih banyak lagi CO2 ke atmosfir. Sebagai akibatnya jumlah CO2 di atmosfer meningkat. CO2 dan O2 atmosfer juga berpindah masuk ke dalam dan ke luar sistem akuatik, dimana CO2 dan O2 terlibat dalam suatu keseimbangan dinamis dengan bentuk bahan anorganik lainnya.
Gambar: Daur Karbon dan daur oksigen
Gambar : Siklus Karbon
Karbon diambil dari atmosfer dengan berbagai cara, antara lain:
  • Ketika matahari bersinar, tumbuhan melakukan fotosintesa untuk mengubah karbon dioksida menjadi karbohidrat, dan melepaskan oksigen ke atmosfer. Proses ini akan lebih banyak menyerap karbon pada hutan dengan tumbuhan yang baru saja tumbuh atau hutan yang sedang mengalami pertumbuhan yang cepat.
  • Pada permukaan laut ke arah kutub, air laut menjadi lebih dingin dan CO2 akan lebih mudah larut. Selanjutnya CO2 yang larut tersebut akan terbawa oleh sirkulasi termohalin yang membawa massa air di permukaan yang lebih berat ke kedalaman laut atau interior laut (lihat bagian solubility pump).
  • Di laut bagian atas (upper ocean), pada daerah dengan produktivitas yang tinggi, organisme membentuk jaringan yang mengandung karbon, beberapa organisme juga membentuk cangkang karbonat dan bagian-bagian tubuh lainnya yang keras. Proses ini akan menyebabkan aliran karbon ke bawah (lihat bagian biological pump).
  • Pelapukan batuan silikat. Tidak seperti dua proses sebelumnya, proses ini tidak memindahkan karbon ke dalam reservoir yang siap untuk kembali ke atmosfer. Pelapukan batuan karbonat tidak memiliki efek netto terhadap CO2 atmosferik karena ion bikarbonat yang terbentuk terbawa ke laut dimana selanjutnya dipakai untuk membuat karbonat laut dengan reaksi yang sebaliknya (reverse reaction).

Karbon dapat kembali ke atmosfer dengan berbagai cara pula, antara lain:
  • Melalui pernafasan (respirasi) oleh tumbuhan dan binatang. Hal ini merupakan reaksi eksotermik dan termasuk juga di dalamnya penguraian glukosa (atau molekul organik lainnya) menjadi karbon dioksida dan air.
  • Melalui pembusukan binatang dan tumbuhan. Fungi atau jamur dan bakteri mengurai senyawa karbon pada binatang dan tumbuhan yang mati dan mengubah karbon menjadi karbon dioksida jika tersedia oksigen, atau menjadi metana jika tidak tersedia oksigen.
  • Melalui pembakaran material organik yang mengoksidasi karbon yang terkandung menghasilkan karbon dioksida (juga yang lainnya seperti asap). Pembakaran bahan bakar fosil seperti batu bara, produk dari industri perminyakan (petroleum), dan gas alam akan melepaskan karbon yang sudah tersimpan selama jutaan tahun di dalam geosfer. Hal inilah yang merupakan penyebab utama naiknya jumlah karbon dioksida di atmosfer.
  • Produksi semen. Salah satu komponennya, yaitu kapur atau gamping atau kalsium oksida, dihasilkan dengan cara memanaskan batu kapur atau batu gamping yang akan menghasilkan juga karbon dioksida dalam jumlah yang banyak.
  • Di permukaan laut dimana air menjadi lebih hangat, karbon dioksida terlarut dilepas kembali ke atmosfer.
  • Erupsi vulkanik atau ledakan gunung berapi akan melepaskan gas ke atmosfer. Gas-gas tersebut termasuk uap air, karbon dioksida, dan belerang. Jumlah karbon dioksida yang dilepas ke atmosfer secara kasar hampir sama dengan jumlah karbon dioksida yang hilang dari atmosfer akibat pelapukan silikat; Kedua proses kimia ini yang saling berkebalikan ini akan memberikan hasil penjumlahan yang sama dengan nol dan tidak berpengaruh terhadap jumlah karbon dioksida di atmosfer dalam skala waktu yang kurang dari 100.000 tahun.
Permasalahan dalam siklus karbon
Karbon (C) adalah elemen yang paling sering kita temui di dalam kehidupan kita sehari-hari. Dalam tanaman dan hewan. Tumbuhan menyimpan Carbon d dalam sari buahnya (dalam bentuk glukose) dan tanaman juga memanfaatkan carbon (CO2-Carbondioksida) dari atmosfer untuk membantu proses fotosintesisnya. Ketika tumbuhan mati, mereka membusuk dan bakteri pengurai akan menguraikannya menjadi bagian dari tanah, yaitu kompos. Karbon yang di dalam tanah (kompos) dalam jangka waktu berjuta-juta tahun kemudian, akan berubah menjadi fosil, sebagai sumber minyak bumi. Sedangkan karbon yg berada di dalam air akan dimanfaatkan tumbuhan air dalam proses fotosintesisnya. Ketika ada ikan yg memakan tumbuhan ini, maka terjadi perpindahan karbon (zat makanan/glukose) dari tumbuhan ke ikan. Sedangkan dalam proses pernafasannya, ikan akan mengeluarkan carbon, dalam bentuk CO2 (karbondioksida).
Kelanjutan dari fosil yg telah berubah menjadi sumber minyak bumi,carbon yg terkandung akan di suling (diolah) menjadi berbagai macam jenis minyak bumi, sebagai sumber energi utama di dunia ini. Metode inilah yg menjadi metode utama penghasil sumber energi kita, untuk menggerakkan mobil,motor, untuk penggerak listrik dan sumber energi bagi perindustrian. Dampak dari pembakaran minyak bumi, CO2 akan dilepaskan ke udara. Pelepasan CO2 yg berlebih diakibatkan salah satunya oleh deforestation (penghancuran hutan). Dengan tidak adanya hutan, maka CO2 tidak dapat digunakan sebagai bahan fotosintesis,,akan tetapi akan menumpuk di atmosfer kita. Penumpukan CO2 akan mengakibatkan efek rumah kaca dimana sinar UV tidak dapat dipantulkan oleh bumi. Sinar UV yg terperangkan di atmosfer akan menaikkan suhu bumi dan berakibat kepada Pemanasan Global.
Dengan adanya permasalahan dalam siklus karbon tersebut, agar tidak terjadi pemanasan global diperlukan adanya penyerapan dari atmosfir melalui tumbuhan dalam jumlah yang besar. Karena tumbuhan dalam proses fotosintesis memanfaatkan karbon. Oleh karena itu pengembangan areal hijau, penghutanan kembali (reboisasi) dan pelestarian hutan sangat diperlukan. Apakah hutan yang ada saat ini memiliki kemampuan penyerapan karbon yang setara dengan pelepasan krabon ke atmosfir pada siklus karbon seperti tersebut di atas? Benarkah tanaman perkebunan seperti sawit dapat menjadi penyerap karbon yang setara dengan hutan yang terkorversi. Untuk daerah perkotaan, perlu ada desain jalan dengan diikuti oleh penghijauan di sepanjang jalan. Begitu juga untuk jalan antar kota penanaman pohon menjadi paket pemeliharaan dan perlindungan jalan.

 Di udara, konsentrasi karbondioksida sangat kecil bila dibandingkan dengan oksigen dan nitrogen (kurang dari 0,04 %). akan tetapi gas ini adalah gas rumah kaca yang berperan dalam efek rumah kaca. Penambahan gas ini dapat meningkatkan suhu udara di bumi. Sekarang ini, populasi tumbuhan semakin berkurang (banyak hutan rusak dan lain-lain ) sedangkan kedaraan bermotor bertambah banyak. Jadi kita bisa bayangkan bahwa pelepasan CO2 ke udara tidak sebanding dengan pengubahannya oleh tumbuhan menjadi Karbohidrat. ini akan mempengaruhi keseimbangan atmosfer dan keseimbangan ekosistem di bumi.
 Neraca karbon global adalah kesetimbangan pertukaran karbon (antara yang masuk dan keluar) antar reservoir karbon atau antara satu putaran (loop) spesifik siklus karbon (misalnya atmosfer - biosfer). Analisis neraca karbon dari sebuah kolam atau reservoir dapat memberikan informasi tentang apakah kolam atau reservoir berfungsi sebagai sumber (source) atau lubuk (sink) karbon dioksida.
DAUR CARBON - OKSIGEN
Dua hal Penting yang dipahami pada Daur ini yaitu
  1. peristiwa Fotosintesis
  2. peristiwa Respirasi 



Proses timbal balik fotosintesis dan respirasi seluler bertanggung jawab atas perubahan dan pergerakan utama karbon. Naik turunnya CO2 dan O2 atsmosfer secara musiman disebabkan oleh penurunan aktivitas Fotosintetik. Dalam skala global kembalinya CO2 dan O2 ke atmosfer melalui respirasi hampir menyeimbangkan pengeluarannya melalui fotosintesis.

Akan tetapi pembakaran kayu dan bahan bakar fosil menambahkan lebih banyak lagi CO2 ke atmosfir. Sebagai akibatnya jumlah CO2 di atmosfer meningkat. CO2 dan O2 atmosfer juga berpindah masuk ke dalam dan ke luar sistem akuatik, dimana CO2 dan O2 terlibat dalam suatu keseimbangan dinamis dengan bentuk bahan anorganik lainnya.
Yang terpenting untuk dipahami dalam siklus Biogeokimia ini ada 3 hal pokok yaitu
  1. terjadi daur aliran zat kimia dari Bio ke Geo atau dari Mahkluk hidup ke Bumi ( penguraian , zat sisa ekskresi dll yang ditujukan kebumi dari mahkluk hidup
  2. terjadi daur aliran zat kimia dari Geo ke Bio yang tidak lain adalah pemanfaatan zat kimia entah dalam bentuk organik maupun anorganik, biasanya oleh tumbuhan lewat akarnya
  3. terjadi daur aliran zat kimia dari Geo ke Geo maksudnya senyawa kimia di udara bisa pindah ke darat misalnya lewat hujan - darat ke udara - darat ke air - air ke darat dll yang semua itu pasti untuk suatu keseimbangan . OK
untuk daur aliran zat dari Bio ke Bio tentu sudah anda bisa ketahui di Rantai makanan atau Jaring makanan.
KONKLUSI
Gambar ini akan lebih menunjukkan pemahaman siklus karbons setelah anda pahami katakanlah sebagai refleksi atau konklusi atau kesimpulannya OK


Siklus Karbon dan Oksigen
  • Di atmosfer terdapat kandungan CO2 sebanyak 0.03%. Sumber-sumber CO2 di udara berasal dari respirasi manusia dan hewan, erupsi vulkanik, pembakaran batubara, dan asap pabrik.
  • Karbon dioksida (CO2)di udara dimanfaatkan oleh tumbuhan untuk ber Fotosintesis dan menghasilkan oksigen yang nantinya akan digunakan oleh manusia dan hewan untuk ber Respirasi.
  • Hewan dan tumbuhan yang mati, dalam waktu yang lama akan membentuk batubara di dalam tanah.
  • Batubara akan dimanfaatkan lagi sebagai bahan bakar yang juga menambah kadar C02 di udara.
  • Di ekosistem air, pertukaran C02 dengan atmosfer berjalan secara tidak langsung.
  • Karbon dioksida berikatan dengan air membentuk asam karbonat yang akan terurai menjadi ion bikarbonat.
  • Bikarbonat adalah sumber karbon bagi alga yang memproduksi makanan untuk diri mereka sendiri dan organisme heterotrof lain.
  • Sebaliknya, saat organisme air berespirasi, CO2 yang mereka keluarkan menjadi bikarbonat.
  • Jumlah bikarbonat dalam air adalah seimbang dengan jumlah C02 di air.

Gbr. Siklus Karbon dan Oksigen di Lingkungan
Agar anda menjadi serius bahwa materi ini penting saya tambahkan materi ini untuk memahami siklus ini menjadi tidak setengah setengah lagi ( saya berharap tidak hanya menghafal tetapi memahami)
  • Unsur kimia yang yang paling mendominasi kehidupan adalah karbon.
  • Tanpa kecuali, semua molekul kimia penting kehidupan selalu mengandung unsur karbon.
  • Awalnya, studi tentang molekul yang mengandung karbon ini merupakan domain dari ilmu kimia organik.
  • Sesuai namanya, kimia organik bekerja pada bahan kimia yang ada pada sistem kehidupan (organic = sesuatu yang berasal dari mahluk hidup, organisme).
  • Dalam perkembangannya, berbagai bahan kimia organik bisa disintesis di lab dan tidak tergantung pada mahluk hidup lagi.
  • Selain itu, beragam senyawa organik baru yang tidak pernah ditemukan pada mahluk hidup berhasil disintesis.
  • Sejak itu, muncul cabang ilmu baru, yaitu biological chemistry yang disingkat menjadi biokimia.
  • Dalam hal ini, biokimia mempelajari beragam senyawa kimia, baik yang alami maupun yang berhasil disintesis di lab, yang bisa ditemukan pada mahluk hidup.
  • Sedangkan yang tidak ditemukan dalam mahluk hidup tetap menjadi domain kimia organik.
  • Unsur utama penyusun molekul biologi adalah karbon.
  • Ragam dan stabilitas molekul yang mengandung unsur karbon disebabkan oleh karakteristiknya yang spesifik, terutama ketika membentuk ikatan dengan unsur-unsur lain.
  • Salah satu sifat yang paling mendasar dari unsur karbon adalah pada orbital elektron terluarnya kekurangan 4 elektron dari seharusnya 8 elektron.
  • Karena orbital elektron terluar merupakan pertanda stabil-tidaknya suatu unsur, maka agar stabil, karbon cenderung berasosiasi dengan 4 unsur lainnya yang juga kekurangan elektron.
  • Dengan kata lain, unsur karbon mempunyai valensi 4.
  • Penggunaan bersama elektron oleh dua unsur atau lebih akan membentuk ikatan yang dikenal dengan ikatan kovalen.
  • Selain itu, semakin kecil BM unsur yang diikat oleh karbon maka ikatan kovalen yang terbentuk stabil.
  • Dengan begitu, untuk satu unsur karbon membutuhkan empat unsur yang lain agar elektron dalam orbit terluarnya menjadi stabil.
  • Pada umumnya, karbon akan membentuk ikatan kovalen dengan 1 karbon yang lain dan dengan oksigen, hidrogen, nitrogen dan sulfur.
  • Metana (satu karbon berikatan dengan 4 hidrogen), etanol (CH3 – CH2OH) dan metilamina(CH3 – NH2) merupakan senyawa karbon sederhana yang mengandung ikatan tunggal.
  • Selain itu, kadangkala dua atau tiga elektron digunakan bersama oleh dua unsur sehingga membentuk ikatan rangkap dua atau ikatan rangkap tiga.
  • Jadi, kombinasi valensi dan BM kecil merupakan karakteristik molekul berunsur karbon menjadi sangat beragam dan stabil yang mendominasi molekul biologis.
Molekul berunsur karbon adalah molekul yang stabil
  • Kestabilan molekul berunsur karbon bisa dilihat dari energi ikatan, yaitu jumlah energi yang dibutuhkan untuk memutus 1 mol (sekitar 6 x 1023) ikatan.
  • Seringkali, energi ikatan disalahartikan sebagai energi yang tersimpan dalam ikatan.
  • Energi ikatan ini diekspresikan sebagai kalori per mol (kal/mol).
  • Kalori adalah jumlah energi yang dibutuhkan untuk menaikkan suhu air sebesar 1o C.
  • Untuk memutus ikatan karbon dan karbon (C – C) dibutuhkan 83 kkal/mol,
  • Energi ikatan karbon dan hidrogen (C – H) = 99 kkal/mol, karbon dan oksigen (C – O) = 84 kkal/mol dan karbon-nitrogen (C – N) = 70 kkal/mol.
  • Energi yang jauh lebih besar dibutuhkan untuk memutus ikatan karbon rangkap dua (C ═ C), yaitu 146 kkal/mol dan ikatan karbon rangkap tiga (C ≡ C), yaitu 212 kkal/mol.
  • Besarnya energi ikatan molekul berunsur karbon diatas bisa lebih mudah diapresiasi kalau dibandingkan dengan nilai-nilai energi yang sejenis.
  • Misalnya, energi ikatan non-kovalen hanya beberapa kkal/mol, energi gelombang panas sekitar 0.6 kkal/mol, ikatan gugus fosfat dalam molekul ATP = 7.3 kkal/mol.
  • Jadi bisa dipahami bahwa molekul yang paling penting bagi kehidupan di muka bumi ini adalah yang berbasis rantai karbon.
  • Hal ini karena energi panjang gelombang matahari yang masuk ke permukaan bumi tidak bisa memutus ikatan C – C.
  • Hubungan energi dan panjang gelombang bisa dinotasikan sebagai E = 28.600/lkkal/einstein.
  • Menggunakan notasi tersebut, maka panjang gelombang cahaya matahari yang masuk ke permukaan bumi berada dalam kisaran cahaya tampak, yaitu antara 400-700 nm, mempunyai energi antara 71.5 – 40.8 kkal/einstein.
  • Nilai energi matahari tersebut jauh dibawah energi ikatan C – C. Dari notasi diatas bisa dimengerti bahwa sinar ultraviolet dengan panjang gelombang <400>
  • Problem: mungkinkah kalaupun ada kehidupan di luar bumi akan tersusun oleh molekul berunsur karbon?
Molekul berunsur karbon adalah molekul yang sangat beragam
  • Valensi 4 dari unsur karbon memungkinkan satu karbon mengikat 4 unsur yang lain, terutama yang berBM rendah yang hanya ada beberapa saja, dan yang paling banyak ditemukan dalam mahluk hidup adalah H. O, N, S dan P.
  • Hal ini menyebabkan molekul berunsur karbon menjadi sangat beragam.
  • Ditambah lagi jika satu valensi karbon membentuk ikatan dengan karbon yang lain.
  • Jika rantai karbon hanya berikatan dengan hidrogen maka akan membentuk hidrokarbon dengan struktur linear maupun sirkular.
  • Hidrokarbon adalah molekul penting secara ekonomis sebagai bahan bakar minyak, misalnya bensin (octane, C8H18).
  • Molekul ini tidak larut air sehingga di dalam sel fungsi utamanya adalah sebagai penyusun membran sel bagian dalam.
  • Selain dengan hidrogen dan unsur-unsur tunggal lainnya, rantai karbon berikatan dengan beragam gugus fungsional yang kemudian sangat menentukan kelarutannya dalam air dan reaktifitasnya.
  • Beberapa gugus fungsional yang biasa ditemukan dalam mahluk hidup antara lain yang bermuatan negatif (karboksil dan fosforil), bermuatan positif (amino), dan berpH netral (hidroksil, sulfhidril, karbonil, aldehida).
Molekul berunsur karbon dapat membentuk stereoisomer
  • Selain kemampuannya berikatan dengan gugus fungsional, keragaman molekul berunsur karbon ditambah lagi dengan kemampuan strukturnya membentuk simetri geometris.
  • Hal ini karena distribusi elektron yang digunakan bersama berada dalam konfigurasi tetrahedral.
  • Jika ada dua molekul karbon dengan struktur bayangan cermin yang satu dengan yang lain maka keduanya disebut stereoisomer.
  • Meskipun begitu, kedua molekul yang saling stereoisomer tidak selalu bisa ditemukan ada dalam mahluk hidup.
  • Misalnya, yang bisa ditemukan ada pada mahluk hidup adalah D-glukosa, sedangkan L-alanin maupun D-alanin keduanya ditemukan sebagai penyusun protein yang ada pada mahluk hidup.
Sintesis dengan Polimerasi yang disusun unsur carbon
  • Makromolekul bertanggungjawab dalam struktur dan fungsi sistem kehidupan
Ada tiga makromolekul yang menyusun sel dan semua tersusun atas Unsur Carbon
  1. karbohidrat
  2. protein
  3. asam nukleat
Sintesis makromolekul dengan polimerasi, tahap-demi-tahap
  1. Makromolekul selalu disintesis tahap demi tahap polimerasi dari molekul-molekul kecil yang disebut monomer
  2. Pembentukan polimer atau penambahan unit-unit monomer ke polimer terjadi melalui reaksi kondensasi – pembentukan molekul air
  3. Sebelum kondensasi terjadi, setiap monomer diaktifkan terlebih dahulu
  4. Molekul yang membantu aktifasi monomer adalah ATP

Makromolekul itu adalah
1. Protein (C-H-O-N)
  • Asam amino sebagai monomer protein
  • Klasifikasi struktur primer, sekunder, tertier dan kuartener
2. Asam nukleat
  • Jenis-jenis nukleotida
  • Polimer: DNA dan RNA
  • Struktur double heliks
3. Polisakarida (C - H - O)
a. Jenis-jenis monosakarida
b. Ikatan glikosida
c. Fungsi penyimpan energi dan struktur
4. Lipid (C - H - O)
  • Asam lemak sebagai penyusun lipid
  • Triacilgliserol sebagai lipid penyimpan
  • Fosfolipid sebagai penyusun struktur membran sel
  • Glikolipid sebagai komponen-komponen khusus membran sel
  • Steroid merupakan lipid dengan beragam fungsi
  • Terpena dibentuk dari isoprena
http://biologigonz.blogspot.com/2009/12/daur-carbon-oksigen.html

http://rendyimage.blogspot.com/2013/09/siklus-karbon.html

Tidak ada komentar:

Posting Komentar